
The Guess-My-Number Game1 1

Conrad Barski. Land of Lisp: Learn to
Program in Lisp, One Game at a Time!,
chapter 2, pages 21–30. No Starch
Press, 2010. ISBN 9781593273491. URL
http://landoflisp.com

Eric Bailey
January 14, 2017 2

2 Last updated October 18, 2017
In this game, you pick a number from 1 to 100, and the computer has to
guess it.

src/guess.lisp:
1a ⟨* 1a⟩≡

(in-package :cl-user)
(defpackage lol.guess

(఍use :cl :prove)
(఍export :bigger

:smaller
:start-over))

(in-package :lol.guess)

⟨reset the global state 1b⟩

This definition is continued in chunks 1
and 2.

Root chunk (not used in this document).
Defines:

lol.guess, used in chunk 3.
Uses bigger 2f, smaller 2c,

and start-over 2g.

Defining the Small and Big Variables

To give the computer a range of numbers in which to guess, we define
the lower and upper limits, *small* and *big*, respectively. We’ll
need to ⟨reset the global state 1b⟩ as such whenever we want to restart
the game,

“Global variable names should start
and end with asterisks (also known in
this context as earmuffs)” [Brown and
Rideau, 2017].

1b ⟨reset the global state 1b⟩≡
(defparameter *small* 1)
(defparameter *big* 100)

This code is used in chunks 1a and 2g.
Defines:

*big*, used in chunks 1c and 2b.
*small*, used in chunks 1c and 2e.

Defining the Guess-My-Number Function

With *small* and *big* defined, we can tell the computer how to
guess a number (guess-my-number) within those limits.

Figure 1: The guessing algorithm
sum <౼ small + big
right shift sum by 1
return sum

The basic algorithm is to ⟨halve the sum of the limits and shorten the
result 1c⟩. To achieve that, we use Common Lisp’s ash function to
perform an arithmetic right shift by 1, i.e. ⌊sum× 2−1⌋.

To define the guess-my-number function, we simply implement the
algorithm described in pseudocode in Figure 1.

1c ⟨halve the sum of the limits and shorten the result 1c⟩≡
(ash (+ *small* *big*) -1)

This code is used in chunk 1e.
Uses *big* 1b and *small* 1b.

Now, when we want to ⟨have the com-
puter guess a number 1d⟩, we simply call
guess-my-number as follows.

1d ⟨have the computer guess a number 1d⟩≡
(guess-my-number)

This code is used in chunk 2.
Uses guess-my-number 1e.

1e ⟨* 1a⟩+≡
(defun guess-my-number ()
⟨halve the sum of the limits and shorten the result 1c⟩)

Defines:
guess-my-number, used in chunk 1d.

http://landoflisp.com
https://github.com/yurrriq/land-of-lisp/blob/master/src/guess.lisp
http://www.lispworks.com/documentation/HyperSpec/Body/f_ash.htm


the guess-my-number game 2

Defining the Smaller and Bigger Functions
To appropriately adjust *big*, ⟨subtract
one from the most recent guess 2a⟩.

2a ⟨subtract one from the most recent guess 2a⟩≡
(1- ⟨have the computer guess a number 1d⟩)

This code is used in chunk 2b.

To define the smaller function, we need to update the global state
such that the next guess is smaller than the last, i.e. ⟨set *big* to one less
than the last guess 2b⟩ then ⟨have the computer guess a number 1d⟩.

2b ⟨set *big* to one less than the last guess 2b⟩≡
(setf *big* ⟨subtract one from the most recent guess 2a⟩)

This code is used in chunk 2c.
Uses *big* 1b.

2c ⟨* 1a⟩+≡
(defun smaller ()

⟨set *big* to one less than the last guess 2b⟩
⟨have the computer guess a number 1d⟩)

Defines:
smaller, used in chunks 1a and 3. To appropriately adjust *small*, ⟨add

one to the most recent guess 2d⟩.

2d ⟨add one to the most recent guess 2d⟩≡
(1+ ⟨have the computer guess a number 1d⟩)

This code is used in chunk 2e.

To define the bigger function, we need to update the global state
such that the next guess is bigger than the last, i.e. ⟨set *small* to one
greater than the last guess 2e⟩ then ⟨have the computer guess a number 1d⟩.

2e ⟨set *small* to one greater than the last guess 2e⟩≡
(setq *small* ⟨add one to the most recent guess 2d⟩)

This code is used in chunk 2f.
Uses *small* 1b.

2f ⟨* 1a⟩+≡
(defun bigger ()

⟨set *small* to one greater than the last guess 2e⟩
⟨have the computer guess a number 1d⟩)

Defines:
bigger, used in chunks 1a and 3.

Defining the Start-Over Function

At this point, to define the start-over function is trivial. We simply
⟨reset the global state 1b⟩ then ⟨have the computer guess a number 1d⟩.

2g ⟨* 1a⟩+≡
(defun start-over ()

⟨reset the global state 1b⟩
⟨have the computer guess a number 1d⟩)

Defines:
start-over, used in chunks 1a and 3.



the guess-my-number game 3

Full Listing

1 (in-package :cl-user)
2 (defpackage lol.guess
3 (:use :cl :prove)
4 (:export :bigger
5 :smaller
6 :start-over))
7 (in-package :lol.guess)
8

9

10 (defparameter *small* 1)
11 (defparameter *big* 100)
12

13

14 (defun guess-my-number ()
15 (ash (+ *small* *big*) -1))
16

17

18 (defun smaller ()
19 (setf *big* (1- (guess-my-number)))
20 (guess-my-number))
21

22

23 (defun bigger ()
24 (setq *small* (1+ (guess-my-number)))
25 (guess-my-number))
26

27

28 (defun start-over ()
29 (defparameter *small* 1)
30 (defparameter *big* 100)
31 (guess-my-number))

Tests
3 ⟨test/guess.lisp 3⟩≡

(in-package :lol.guess)

(plan 1)

(subtest ”A Plausible Session”
(is (start-over) 50 ”(start-over) ; ಘ> 50”)
(is (smaller) 25 ”(smaller) ; ಘ> 25”)
(is (bigger) 37 ”(bigger) ; ಘ> 37”)
(is (bigger) 43 ”(bigger) ; ಘ> 43”)
(is (smaller) 40 ”(smaller) ; ಘ> 40”)
(is (bigger) 41 ”(bigger) ; ಘ> 41”)
(is (bigger) 42 ”(bigger) ; ಘ> 42”))

(finalize)
Root chunk (not used in this document).
Uses bigger 2f, lol.guess 1a, smaller 2c, and start-over 2g.



the guess-my-number game 4

Chunks

⟨* 1a⟩ 1a, 1e, 2c, 2f, 2g
⟨add one to the most recent guess 2d⟩ 2d, 2e
⟨halve the sum of the limits and shorten the result 1c⟩ 1c, 1e
⟨have the computer guess a number 1d⟩ 1d, 2a, 2c, 2d, 2f, 2g
⟨reset the global state 1b⟩ 1a, 1b, 2g
⟨set *big* to one less than the last guess 2b⟩ 2b, 2c
⟨set *small* to one greater than the last guess 2e⟩ 2e, 2f
⟨subtract one from the most recent guess 2a⟩ 2a, 2b
⟨test/guess.lisp 3⟩ 3

Index

*big*: 1b, 1c, 2b
*small*: 1b, 1c, 2e
bigger: 1a, 2f, 3
guess-my-number: 1d, 1e
lol.guess: 1a, 3
smaller: 1a, 2c, 3
start-over: 1a, 2g, 3

References

Conrad Barski. Land of Lisp: Learn to Program in Lisp, One Game at a Time!, chapter 2, pages 21–30.
No Starch Press, 2010. ISBN 9781593273491. URL http://landoflisp.com.

Robert Brown and François-René Rideau. Google Common Lisp Style Guide: Global variables and
constants. https://google.github.io/styleguide/lispguide.xml?showone=Global_variables_
and_constants#Global_variables_and_constants, September 2017. Accessed: 2017-10-08.

http://landoflisp.com
https://google.github.io/styleguide/lispguide.xml?showone=Global_variables_and_constants#Global_variables_and_constants
https://google.github.io/styleguide/lispguide.xml?showone=Global_variables_and_constants#Global_variables_and_constants

	Defining the Small and Big Variables
	Defining the Guess-My-Number Function
	Defining the Smaller and Bigger Functions
	Defining the Start-Over Function
	Full Listing
	Tests
	Chunks
	Index

