
The Wizard’s Adventure Game 1 1

Conrad Barski. Land of Lisp: Learn to
Program in Lisp, One Game at a Time!,
chapter 5, pages 67–84. No Starch
Press, 2010. ISBN 9781593273491. URL
http://landoflisp.com

Eric Bailey
October 14, 2017 2

2 Last updated October 19, 2017
In this game, you are a wizard’s apprentice.
You’ll explore the wizard’s house. 1 ⟨* 1⟩≡

(in-package :cl-user)
(defpackage lol.wizard5

(఍use :cl)
(఍export :look

:walk
:pickup
:inventory
:game-repl))

(in-package :lol.wizard5)

⟨define the global variables 2d⟩
This definition is continued in

chunks 2–7.
Root chunk (not used in this document).
Defines:

lol.wizard5, used in chunks 7 and 8.
Uses inventory 7b, look 5f, pickup 6l,

and walk 6g.
N.B. game-repl is defined in

src/wizard6.lisp.

Contents

Setting the Scene 2
Describing the Location 2
Describing the Paths 3
Describing Multiple Paths at Once 4
Describing Objects at a Specific Location 4
Describing Visible Objects 5
Describing It All 5
Walking Around in Our World 6
Picking Up Objects 6
Checking Our Inventory 7
Tests 7

lol.wizard5 (Private Parts) 8
lol.wizard5 (Public API) 8

Running the Tests 9
Full Listing 10
Chunks 12
Index 12

http://landoflisp.com
https://github.com/yurrriq/land-of-lisp/blob/master/src/wizard6.lisp

the wizard’s adventure game 2

Setting the Scene

This world consists of only three locations:
1.2a ⟨The living room 2a⟩≡

you are in the living room.
a wizard is snoring loudly on the couch.

This code is used in chunks 2d and 8.

2.2b ⟨A beautiful garden 2b⟩≡
you are in a beautiful garden.
there is a well in front of you.

This code is used in chunks 2d and 8b.

3.2c ⟨The attic 2c⟩≡
you are in the attic.
there is a giant welding torch in the corner.

This code is used in chunk 2d.
nodes is simply an association list
with locations as keys and the previous
descriptions as values.2d ⟨define the global variables 2d⟩≡

(defparameter *nodes*
’((living-room (⟨The living room 2a⟩))

(garden (⟨A beautiful garden 2b⟩))
(attic (⟨The attic 2c⟩))))

This definition is continued in chunks 3–5.
This code is used in chunk 1.
Defines:

nodes, used in chunks 5f and 8a.

Describing the Location

To find the description, ⟨look up a location 2e⟩ and take the cadr. Pre-
ferring the functional programming style, pass nodes as an argument,
instead of referencing *nodes* directly.

2e ⟨look up a location 2e⟩≡
(assoc location nodes)

This code is used in chunk 2f.2f ⟨* 1⟩+≡
(defun describe-location (location nodes)

(cadr ⟨look up a location 2e⟩))

Defines:
describe-location, used in chunks 5f and 8a.

the wizard’s adventure game 3

Describing the Paths
From the living-room, you can move to
the garden by going west through the
door.

3a ⟨garden door 3a⟩≡
THERE IS A DOOR GOING WEST FROM HERE.

This code is used in chunks 7c and 8a.

3b ⟨living-room paths 3b⟩≡
(garden west door)

This definition is continued in chunk 3d.
This code is used in chunk 3g.

Or to the attic by going upstairs via
the ladder.3c ⟨attic ladder 3c⟩≡

THERE IS A LADDER GOING UPSTAIRS FROM HERE.
This code is used in chunk 7c.

3d ⟨living-room paths 3b⟩+≡
(attic upstairs ladder)

This code is used in chunk 3g.
From the garden, you can move to the
living-room by going east through the
door.3e ⟨garden path 3e⟩≡

(living-room east door)
This code is used in chunk 3g.

From the attic, you can move to the
living-room by going downstairs via
the ladder.3f ⟨attic path 3f⟩≡

(living-room downstairs ladder)
This code is used in chunk 3g. 3g ⟨define the global variables 2d⟩+≡

(defparameter *edges*
’((living-room ⟨living-room paths 3b⟩)

(garden ⟨garden path 3e⟩)
(attic ⟨attic path 3f⟩)))

This code is used in chunk 1.
Defines:

edges, used in chunks 5f, 6a,
and 8a.

To describe such a symbolic path, take the means (caddr) and direc-
tion (cadr) and return a descriptive list.

3h ⟨* 1⟩+≡
(defun describe-path (edge)

‘(there is a ,(caddr edge) going ,(cadr edge) from here.))

Defines:
describe-path, used in chunk 8a.

the wizard’s adventure game 4

Describing Multiple Paths at Once

To describe multiple paths:
1.4a ⟨Find the relevant edges. 4a⟩≡

(cdr (assoc location edges))
This code is used in chunk 4d.

2.4b ⟨Convert the edges to descriptions. 4b⟩≡
mapcar #’describe-path

This code is used in chunk 4d.

3.4c ⟨Join the descriptions. 4c⟩≡
apply #’append

This code is used in chunks 4d and 5d.

4d ⟨* 1⟩+≡
(defun describe-paths (location edges)

(⟨Join the descriptions. 4c⟩ (⟨Convert the edges to descriptions. 4b⟩ ⟨Find the relevant edges. 4a⟩)))

Defines:
describe-paths, used in chunks 5f and 8a.

Describing Objects at a Specific Location
4e ⟨define the global variables 2d⟩+≡

(defparameter *objects* ’(whiskey bucket frog chain))

(defparameter *object-locations*
’((whiskey living-room)

(bucket living-room)
(chain garden)
(frog garden)))

This code is used in chunk 1.
Defines:

object-locations, used in chunks 5–8.
objects, used in chunks 5–8.

4f ⟨at-loc-p 4f⟩≡
(at-loc-p (obj)

(eq (cadr (assoc obj obj-locs)) loc))
This code is used in chunk 4g.4g ⟨* 1⟩+≡

(defun objects-at (loc objs obj-locs)
(labels (⟨at-loc-p 4f⟩)

(remove-if-not #’at-loc-p objs)))

Defines:
objects-at, used in chunks 5–8.

the wizard’s adventure game 5

Describing Visible Objects

To describe the objects visible at a given location:
1.5a ⟨Find the objects at the current location. 5a⟩≡

(objects-at loc objs obj-loc)
This code is used in chunk 5d.
Uses objects-at 4g.

2.5b ⟨Convert the objects to descriptions. 5b⟩≡
mapcar #’describe-obj

This code is used in chunk 5d.

3. ⟨Join the descriptions. 4c⟩ 5c ⟨describe-obj 5c⟩≡
(describe-obj (obj)

‘(you see a ,obj on the floor.))
This code is used in chunk 5d.5d ⟨* 1⟩+≡

(defun describe-objects (loc objs obj-loc)
(labels (⟨describe-obj 5c⟩)

(⟨Join the descriptions. 4c⟩
(⟨Convert the objects to descriptions. 5b⟩

⟨Find the objects at the current location. 5a⟩))))

Defines:
describe-objects, used in chunks 5f and 8.

Describing It All
N.B. The look function is not functional,
since it reads global variables.

5e ⟨define the global variables 2d⟩+≡
(defparameter *location* ’living-room)

This code is used in chunk 1.
Defines:

location, used in chunks 5 and 6.

5f ⟨* 1⟩+≡
(defun look ()

(append (describe-location *location* *nodes*)
(describe-paths *location* *edges*)
(describe-objects *location* *objects* *object-locations*)))

Defines:
look, used in chunks 1, 6f, and 8b.

Uses *edges* 3g, *location* 5e, *nodes* 2d, *object-locations* 4e, *objects* 4e,
describe-location 2f, describe-objects 5d, and describe-paths 4d.

the wizard’s adventure game 6

Walking Around in Our World

Given a direction, ⟨locate the path marked with the appropriate direc-
tion 6c⟩ and ⟨try to go in that direction 6f⟩. Since the directionwill be
there, ⟨match against the cadr of each path 6b⟩.

6a ⟨look up the available walkings paths 6a⟩≡
(cdr (assoc *location* *edges*))

This code is used in chunk 6c.
Uses *edges* 3g and *location* 5e.

6b ⟨match against the cadr of each path 6b⟩≡
:key #’cadr

This code is used in chunk 6c.

6c ⟨locate the path marked with the appropriate direction 6c⟩≡
(find direction

⟨look up the available walkings paths 6a⟩
⟨match against the cadr of each path 6b⟩)

This code is used in chunk 6g.

If such a path is found, ⟨adjust the player’s position 6d⟩, otherwise
⟨admonish the player 6e⟩.

6d ⟨adjust the player’s position 6d⟩≡
(setf *location* (car next))

This code is used in chunk 6f.
Uses *location* 5e.

6e ⟨admonish the player 6e⟩≡
’(you cannot go that way.)

This code is used in chunks 6f and 8b.

6f ⟨try to go in that direction 6f⟩≡
(if next

(progn ⟨adjust the player’s position 6d⟩
(look))

⟨admonish the player 6e⟩)
This code is used in chunk 6g.
Uses look 5f.

6g ⟨* 1⟩+≡
(defun walk (direction)

(let ((next ⟨locate the path marked with the appropriate direction 6c⟩))
⟨try to go in that direction 6f⟩))

Defines:
walk, used in chunks 1 and 8b.

Picking Up Objects

To determine if ⟨the object is on the floor 6h⟩,
6h ⟨the object is on the floor 6h⟩≡

(member object ⟨get the list of objects here 6i⟩)
This code is used in chunk 6l.6i ⟨get the list of objects here 6i⟩≡

(objects-at *location* *objects* *object-locations*)
This code is used in chunk 6h.
Uses *location* 5e, *object-locations* 4e, *objects* 4e, and objects-at 4g.

... and check if object is a member. If so...
6j ⟨pick it up 6j⟩≡

(push (list object ’body) *object-locations*)
‘(you are now carrying the ,object)

This code is used in chunk 6l.
Uses *object-locations* 4e.

Otherwise...
6k ⟨you cannot get that. 6k⟩≡

’(you cannot get that.)
This code is used in chunks 6l and 8b.

6l ⟨* 1⟩+≡
(defun pickup (object)

(if ⟨the object is on the floor 6h⟩
(progn ⟨pick it up 6j⟩)
⟨you cannot get that. 6k⟩))

Defines:
pickup, used in chunks 1 and 8b.

the wizard’s adventure game 7

Checking Our Inventory

To check our inventory, we ⟨retrieve the list of carried objects 7a⟩ and
prepend (a.k.a. cons) the symbol items-.

7a ⟨retrieve the list of carried objects 7a⟩≡
(objects-at ’body *objects* *object-locations*)

This code is used in chunk 7b.
Uses *object-locations* 4e, *objects* 4e, and objects-at 4g.

7b ⟨* 1⟩+≡
(defun inventory ()

(cons ’items- ⟨retrieve the list of carried objects 7a⟩))
Defines:

inventory, used in chunks 1 and 8b.

Tests

7c ⟨living-room path descriptions 7c⟩≡
⟨garden door 3a⟩
⟨attic ladder 3c⟩

This code is used in chunk 8.

7d ⟨living-room object descriptions 7d⟩≡
YOU SEE A WHISKEY ON THE FLOOR.
YOU SEE A BUCKET ON THE FLOOR.

This code is used in chunk 8.

7e ⟨garden path description 7e⟩≡
THERE IS A DOOR GOING EAST FROM HERE.

This code is used in chunk 8b.

7f ⟨garden object descriptions 7f⟩≡
YOU SEE A FROG ON THE FLOOR.
YOU SEE A CHAIN ON THE FLOOR.

This code is used in chunk 8b.

7g ⟨You’ve got whiskey! 7g⟩≡
’(YOU ARE NOW CARRYING THE WHISKEY)

This code is used in chunk 8b.

7h ⟨All you have is whiskey. 7h⟩≡
’(ITEMS- WHISKEY)

This code is used in chunk 8b.

7i ⟨test/wizard5.lisp 7i⟩≡
(in-package :lol.wizard5)

(prove:plan 2)

⟨Test the private functions in lol.wizard5 8a⟩

⟨Test the exported functions in lol.wizard5. 8b⟩

(prove:finalize)
Root chunk (not used in this document).
Uses lol.wizard5 1.

the wizard’s adventure game 8

lol.wizard5 (Private Parts)
8a ⟨Test the private functions in lol.wizard5 8a⟩≡

(prove:subtest ”lol.wizard5 (Private Parts)”
(prove:is (describe-location ’living-room *nodes*)

’(⟨The living room 2a⟩))
(prove:is (describe-path ’(garden west door))

’(⟨garden door 3a⟩))
(prove:is (describe-paths ’living-room *edges*)

’(⟨living-room path descriptions 7c⟩))
(prove:is (describe-objects ’living-room *objects* *object-locations*)

’(⟨living-room object descriptions 7d⟩))
(prove:is (objects-at ’living-room *objects* *object-locations*)

’(WHISKEY BUCKET)))

This code is used in chunk 7i.
Uses *edges* 3g, *nodes* 2d, *object-locations* 4e, *objects* 4e, describe-location

2f, describe-objects 5d, describe-path 3h, describe-paths 4d, lol.wizard5 1,
and objects-at 4g.

lol.wizard5 (Public API)
8b ⟨Test the exported functions in lol.wizard5. 8b⟩≡

(prove:subtest ”lol.wizard5 (Public API)”
(prove:is (look)

’(⟨The living room 2a⟩
⟨living-room path descriptions 7c⟩
⟨living-room object descriptions 7d⟩))

(prove:subtest ”Pick up the whiskey”
(prove:is (pickup ’whiskey)

⟨You’ve got whiskey! 7g⟩)
(prove:is (objects-at ’living-room *objects* *object-locations*)

’(BUCKET))
(prove:is (describe-objects ’living-room *objects* *object-locations*)

’(YOU SEE A BUCKET ON THE FLOOR.)))
(prove:is (pickup ’the-pace)

⟨you cannot get that. 6k⟩)
(prove:is (walk ’west)

’(⟨A beautiful garden 2b⟩
⟨garden path description 7e⟩
⟨garden object descriptions 7f⟩))

(prove:is (walk ’south)
⟨admonish the player 6e⟩)

(prove:is (inventory)
⟨All you have is whiskey. 7h⟩))

This code is used in chunk 7i.
Uses *object-locations* 4e, *objects* 4e, describe-objects 5d, inventory 7b,

lol.wizard5 1, look 5f, objects-at 4g, pickup 6l, and walk 6g.

the wizard’s adventure game 9

Running the Tests 9a ⟨Set the exit status. 9a⟩≡
(if (null failures) 0 1)

Root chunk (not used in this document).

9b ⟨Exit with an appropriate status code. 9b⟩≡
(sb-posix:exit status)

Root chunk (not used in this document).
prove is yet another unit testing frame-
work for Common Lisp.

9c ⟨Run the system tests. 9c⟩≡
(prove:run-test-system :lol-test)

This code is used in chunk 9d.

9d ⟨Run the system tests and exit. 9d⟩≡
(uiop:quit (if ⟨Run the system tests. 9c⟩ 0 1))

This code is used in chunk 9j.
See the Nixpkgs Contributors Guide for
more information on using nix-shell as
a shebang.

9e ⟨script header 9e⟩≡
#! /usr/bin/env nix-shell
#! nix-shell -i sh -p sbcl

This definition is continued in chunk 9.
This code is used in chunk 9j.

Run sbcl quietly:
9f ⟨script header 9e⟩+≡

sbcl –noinform –non-interactive \
This code is used in chunk 9j.
Load ⟨init.lisp 9k⟩ as the user initializa-

tion file:
9g ⟨script header 9e⟩+≡

–userinit init.lisp \
This code is used in chunk 9j.

9h ⟨Load the test package. 9h⟩≡
(asdf:load-system :lol-test)

This code is used in chunk 9j.

9i ⟨script footer 9i⟩≡
Local Variables:
mode: sh
End:

This code is used in chunk 9j.

9j ⟨bin/runtests 9j⟩≡
⟨script header 9e⟩

–eval ”⟨Load the test package. 9h⟩” \
–eval ”⟨Run the system tests and exit. 9d⟩”

⟨script footer 9i⟩
Root chunk (not used in this document).

$./bin/runtests
✓ 2 tests completed (0ms)

Summary:
All 1 file passed.

9k ⟨init.lisp 9k⟩≡
#-quicklisp
(let ((quicklisp-init (merge-pathnames ”quicklisp/setup.lisp”

(user-homedir-pathname))))
(when (probe-file quicklisp-init)

(load quicklisp-init)))

(push (concatenate ’string (sb-posix:getcwd) ”/”)
asdf:*central-registry*)

Root chunk (not used in this document).

https://github.com/fukamachi/prove
https://nixos.org/nixpkgs/manual/
https://nixos.org/nixpkgs/manual/#nix-shell-as-shebang
https://nixos.org/nixpkgs/manual/#nix-shell-as-shebang

the wizard’s adventure game 10

Full Listing

11

12 (defparameter *nodes*
13 '((living-room (you are in the living room.
14 a wizard is snoring loudly on the couch.))
15 (garden (you are in a beautiful garden.
16 there is a well in front of you.))
17 (attic (you are in the attic.
18 there is a giant welding torch in the corner.))))
19

20 (defparameter *edges*
21 '((living-room (garden west door)
22 (attic upstairs ladder))
23 (garden (living-room east door))
24 (attic (living-room downstairs ladder))))
25

26 (defparameter *objects* '(whiskey bucket frog chain))
27

28 (defparameter *object-locations*
29 '((whiskey living-room)
30 (bucket living-room)
31 (chain garden)
32 (frog garden)))
33

34 (defparameter *location* 'living-room)
35

36

37 (defun describe-location (location nodes)
38 (cadr (assoc location nodes)))
39

40

41 (defun describe-path (edge)
42 `(there is a ,(caddr edge) going ,(cadr edge) from here.))
43

44

45 (defun describe-paths (location edges)
46 (apply #'append (mapcar #'describe-path (cdr (assoc location edges)))))
47

48

49 (defun objects-at (loc objs obj-locs)
50 (labels ((at-loc-p (obj)
51 (eq (cadr (assoc obj obj-locs)) loc)))

the wizard’s adventure game 11

54

55 (defun describe-objects (loc objs obj-loc)
56 (labels ((describe-obj (obj)
57 `(you see a ,obj on the floor.)))
58 (apply #'append
59 (mapcar #'describe-obj
60 (objects-at loc objs obj-loc)))))
61

62

63 (defun look ()
64 (append (describe-location *location* *nodes*)
65 (describe-paths *location* *edges*)
66 (describe-objects *location* *objects* *object-locations*)))
67

68

69 (defun walk (direction)
70 (let ((next (find direction
71 (cdr (assoc *location* *edges*))
72 :key #'cadr)))
73 (if next
74 (progn (setf *location* (car next))
75 (look))
76 '(you cannot go that way.))))
77

78

79 (defun pickup (object)
80 (if (member object (objects-at *location* *objects* *object-locations*))
81 (progn (push (list object 'body) *object-locations*)
82 `(you are now carrying the ,object))
83 '(you cannot get that.)))
84

85

86 (defun inventory ()
87 (cons 'items- (objects-at 'body *objects* *object-locations*)))

the wizard’s adventure game 12

Chunks

⟨* 1⟩ 1, 2f, 3h, 4d, 4g, 5d, 5f, 6g, 6l, 7b
⟨A beautiful garden 2b⟩ 2b, 2d, 8b
⟨adjust the player’s position 6d⟩ 6d, 6f
⟨admonish the player 6e⟩ 6e, 6f, 8b
⟨All you have is whiskey. 7h⟩ 7h, 8b
⟨at-loc-p 4f⟩ 4f, 4g
⟨attic ladder 3c⟩ 3c, 7c
⟨attic path 3f⟩ 3f, 3g
⟨bin/runtests 9j⟩ 9j
⟨Convert the edges to descriptions. 4b⟩ 4b, 4d
⟨Convert the objects to descriptions. 5b⟩ 5b, 5d
⟨define the global variables 2d⟩ 1, 2d, 3g, 4e, 5e
⟨describe-obj 5c⟩ 5c, 5d
⟨Exit with an appropriate status code. 9b⟩ 9b
⟨Find the objects at the current location. 5a⟩ 5a, 5d
⟨Find the relevant edges. 4a⟩ 4a, 4d
⟨garden door 3a⟩ 3a, 7c, 8a
⟨garden object descriptions 7f⟩ 7f, 8b
⟨garden path 3e⟩ 3e, 3g
⟨garden path description 7e⟩ 7e, 8b
⟨get the list of objects here 6i⟩ 6h, 6i
⟨init.lisp 9k⟩ 9k
⟨Join the descriptions. 4c⟩ 4c, 4d, 5d
⟨living-room object descriptions 7d⟩ 7d, 8a, 8b
⟨living-room path descriptions 7c⟩ 7c, 8a, 8b
⟨living-room paths 3b⟩ 3b, 3d, 3g
⟨Load the test package. 9h⟩ 9h, 9j
⟨locate the path marked with the appropriate direction 6c⟩ 6c, 6g
⟨look up a location 2e⟩ 2e, 2f
⟨look up the available walkings paths 6a⟩ 6a, 6c
⟨match against the cadr of each path 6b⟩ 6b, 6c
⟨pick it up 6j⟩ 6j, 6l
⟨retrieve the list of carried objects 7a⟩ 7a, 7b

⟨Run the system tests and exit. 9d⟩ 9d, 9j
⟨Run the system tests. 9c⟩ 9c, 9d
⟨script footer 9i⟩ 9i, 9j
⟨script header 9e⟩ 9e, 9f, 9g, 9j
⟨Set the exit status. 9a⟩ 9a
⟨Test the exported functions in lol.wizard5. 8b⟩ 7i, 8b
⟨Test the private functions in lol.wizard5 8a⟩ 7i, 8a
⟨test/wizard5.lisp 7i⟩ 7i
⟨The attic 2c⟩ 2c, 2d
⟨The living room 2a⟩ 2a, 2d, 8a, 8b
⟨the object is on the floor 6h⟩ 6h, 6l
⟨try to go in that direction 6f⟩ 6f, 6g
⟨you cannot get that. 6k⟩ 6k, 6l, 8b
⟨You’ve got whiskey! 7g⟩ 7g, 8b

Index

edges: 3g, 5f, 6a, 8a
location: 5e, 5f, 6a, 6d, 6i
nodes: 2d, 5f, 8a
object-locations: 4e, 5f, 6i, 6j, 7a, 8a, 8b
objects: 4e, 5f, 6i, 7a, 8a, 8b
describe-location: 2f, 5f, 8a
describe-objects: 5d, 5f, 8a, 8b
describe-path: 3h, 8a
describe-paths: 4d, 5f, 8a
inventory: 1, 7b, 8b
lol.wizard5: 1, 7i, 8a, 8b
look: 1, 5f, 6f, 8b
objects-at: 4g, 5a, 6i, 7a, 8a, 8b
pickup: 1, 6l, 8b
walk: 1, 6g, 8b

the wizard’s adventure game 13

3 3

Kent M. Pitman. CLHS: Glos-
sary. http://www.lispworks.com/
documentation/HyperSpec/Body/26_a.
htm, April 2005. Accessed: 2017-10-17

Glossary

association list a list of conses representing an assocation of keys with
values, where the car of each cons is the key and the cdr is the
associated value. 2

caddr (lambda (x) (car (cdr (cdr x)))) 3

cadr (lambda (x) (car (cdr x))) 2, 3

car

1.
a. the first component of a cons; the other is the cdr.
b. the head of a list, or nil if the list is the empty list.

2. the object that is held in the car. “The function car returns the
car of a cons.”

13

cdr

1.
a. the second component of a cons; the other is the car.
b. the tail of a list, or nil if the list is the empty list.

2. the object that is held in the cdr. “The function cdr returns the
cdr of a cons.”

13

cons

1. a compound data objectmade up of a car and a cdr.
2. to create such an object.
3. to create any object or to allocate storage.

13

empty list the list containing no elements. 13

nil represents both boolean false and the empty list. Alternatively
notated as () to emphasize its use as an empty list. 13

object any Lisp datum. 13

http://www.lispworks.com/documentation/HyperSpec/Body/26_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_a.htm

the wizard’s adventure game 14

References

Conrad Barski. Land of Lisp: Learn to Program in Lisp, One Game at
a Time!, chapter 5, pages 67–84. No Starch Press, 2010. ISBN
9781593273491. URL http://landoflisp.com.

Kent M. Pitman. CLHS: Glossary. http://www.lispworks.com/
documentation/HyperSpec/Body/26_a.htm, April 2005. Accessed:
2017-10-17.

http://landoflisp.com
http://www.lispworks.com/documentation/HyperSpec/Body/26_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_a.htm

	Setting the Scene
	Describing the Location
	Describing the Paths
	Describing Multiple Paths at Once
	Describing Objects at a Specific Location
	Describing Visible Objects
	Describing It All
	Walking Around in Our World
	Picking Up Objects
	Checking Our Inventory
	Tests
	Running the Tests
	Full Listing
	Chunks
	Index

