
My favorite Erlang Program 1
1 This version of Joe’s blog post was
translated, edited and annotated by Eric
Bailey on January 14, 2017.

Joe Armstrong. My fa-
vorite erlang program. https:

//joearms.github.io/2013/11/21/

My-favorite-erlang-program.html,
November 2013

Joe Armstrong

November 21, 2013

The other day I got a mail from Dean Galvin from Rowan Univer-
sity. Dean was doing an Erlang project so he asked “What example
program would best exemplify Erlang”.

He wanted a small program, that would be suitable for a ten minute
talk that would best show off the language. I thought for a while ...
and quickly wrote my favorite program, it’s the “Universal server”.

The Universal Server

Normally servers do something. An HTTP server responds to HTTP
requests, an FTP server response to FTP requests and so on. But what
about a Universal Server? Surely we can generalize the idea of a server
and make a universal server, which we can later tell to become a
specific server.

Here’s my universal server:
1 〈The Universal Server 1〉≡ (11)

universal_server() ->

〈Wait for a ‘‘become F” message and become an F server 2〉
end.

Defines:
universal_server, used in chunk 7.

A universal server waits for a
{become, F} message and then be-
comes an F server.

2 〈Wait for a ‘‘become F” message and become an F server 2〉≡ (1)
receive

{become, F} ->

F()

That was pretty easy. Once I have created a universal server, it just
sits and waits for a {become, F} message and then it becomes an F

server.

The Factorial Server

A factorial server is a server which waits for an integer and sends
back the factorial of an integer. This is mind-bogglingly simple:

3 〈The Factorial Server 3〉≡ (11)
factorial_server() ->

〈Wait for an integer N and send back factorial(N) 4〉,
factorial_server()

end.

〈The factorial function 5〉
Defines:

factorial_server, used in chunk 8.

https://github.com/yurrriq
https://github.com/yurrriq
https://joearms.github.io/2013/11/21/My-favorite-erlang-program.html
https://joearms.github.io/2013/11/21/My-favorite-erlang-program.html
https://joearms.github.io/2013/11/21/My-favorite-erlang-program.html


my favorite erlang program 2

A factorial server simply waits for an
integer n and sends back n!.

4 〈Wait for an integer N and send back factorial(N) 4〉≡ (3)
receive

{From, N} ->

From ! factorial(N)

Uses factorial 5.

The Erlang definition of factorial/1
bears a striking resemblance to the
recurrence relation:

n! =

{
1 if n = 0,
(n− 1)!× n if n > 0.

5 〈The factorial function 5〉≡ (3)
factorial(0) -> 1;

factorial(N) -> N * factorial(N-1).

Defines:
factorial, used in chunk 4.

Now we’re ready to rock and roll...

Putting It All Together

I’ll write a little function that creates a universal server and sends it a
“become a factorial server” message. Then I’ll send it an integer, wait
for the response, and print the response:

6 〈Putting It All Together 6〉≡ (11)
test() ->

〈Create a universal server 7〉,
〈Send it a ‘‘become a factorial server” message 8〉,
〈Send it an integer 9〉
〈Wait for the response and print the response 10〉
end.

Defines:
test, used in chunk 11.

test/0 creates a universal server,
binding its pid to Pid;

7 〈Create a universal server 7〉≡ (6)
Pid = spawn(fun universal_server/0)

Uses universal_server 1.

... sends Pid a “become a factorial
server” message;

8 〈Send it a ‘‘become a factorial server” message 8〉≡ (6)
Pid ! {become, fun factorial_server/0}

Uses factorial_server 3.

... sends Pid 50, asking the factorial
server to compute and respond with the
value of 50!;

9 〈Send it an integer 9〉≡ (6)
Pid ! {self(), 50},

... waits for the response and prints the
response.

10 〈Wait for the response and print the response 10〉≡ (6)
receive

X ->

io:format("~w~n", [X])



my favorite erlang program 3

All these functions belong to the module fav1:
N.B. fav1 exports only test/0.11 〈fav1 11〉≡

-module(fav1).

-export([test/0]).

〈Putting It All Together 6〉

〈The Universal Server 1〉

〈The Factorial Server 3〉
Uses test 6.

�
Now all we have to do is fire up an Erlang shell and run the test

program:

$ erl

1> c("src/erlang/fav1.erl").

{ok, fav1}

2> fav1:test().

30414093201713378043612608166064768844377641568960512000000000000

ok

Alternatively, we can simply compile and evaluate it from the
command line:

$ erlc src/erlang/fav1.erl

$ erl -noshell -eval "fav1:test()" -s init stop

30414093201713378043612608166064768844377641568960512000000000000

https://github.com/yurrriq/learning-noweb/blob/master/src/erlang/fav1.erl


my favorite erlang program 4

Aside

A few years ago when I was at SICS I had access to Planet Lab.
Planet Lab is a research network of 9000 computers. Joining Planet
Lab is easy, all you have to do is buy a standard PC, connect it to
the network and donate its use to the Planet Lab organization. Hav-
ing donated your machine to the network, you can use all the other
machines.

Planet Lab is a real-world test-bed for distributed applications. It
currently has 1171 nodes at 562 sites.

What was I going to do with Planet Lab? I didn’t have a clue.
What I ended up doing was making some scripts to install empty
universal Erlang servers on all the Planet Lab machines (pretty much
like the code in this article) - then I set up a gossip algorithm to flood
the network with become messages. Then I had an empty network
that in a few seconds would become anything I wanted it to.

About a year later I had to write a paper. One of the disadvantages
of being a researcher is that in order to get money you have to write
a paper about something or other. The paper is never about what
currently interests you at the moment, but rather what the project
that financed your research expects to read about.

Well I had my gossip network setup on Planet Lab and I could tell
it to become anything, so I told it to become a content distribution
network and used a gossip algorithm to make copies of the same
file on all machines on the network and wrote a paper about it and
everybody was happy.

© 2014-2016 Joe Armstrong - All Rights Reserved.

http://www.planet-lab.org


my favorite erlang program 5

Chunks

〈Create a universal server 7〉
〈fav1 11〉
〈Putting It All Together 6〉
〈Send it a “become a factorial server” message 8〉
〈Send it an integer 9〉
〈The factorial function 5〉
〈The Factorial Server 3〉
〈The Universal Server 1〉
〈Wait for a “become F” message and become an F server 2〉
〈Wait for an integer N and send back factorial(N) 4〉
〈Wait for the response and print the response 10〉

Index

factorial: 4, 5

factorial_server: 3, 8

test: 6, 11

universal_server: 1, 7

References

Joe Armstrong. My favorite erlang program. https://joearms.

github.io/2013/11/21/My-favorite-erlang-program.html,
November 2013.

https://joearms.github.io/2013/11/21/My-favorite-erlang-program.html
https://joearms.github.io/2013/11/21/My-favorite-erlang-program.html

	The Universal Server
	The Factorial Server
	Putting It All Together
	Aside
	Chunks
	Index

