ERIC BAILEY

PAIP EXERCISES

Contents

Introduction to Common Lisp 5

A Simple Lisp Program 9

Overview of Lisp 11

GPS: The General Problem Solver 13
Evr1zA: Dialog with a Machine 27
Build Software Tools 33

Package 35

Test Runner 37

Chunks 39

Index 43

Bibliography 45

Introduction to Common Lisp

Using Functions

(titles 1)= (7)
(defparameter *titlesx*
"(Mr Mrs Miss Ms Sir Madam Dr Admiral Major General)
"A list of titles that can appear at the start of a name.")

Defines:
xtitles*, used in chunk 4.

(abstract first-name 2)=
(({function first-name(name): 3)
((if the first element of name is a title 4)
(then return the first-name of the rest of the name s5)
(else return the first element of the name 6)))

(function first-name(name): 3)= (2)
defun first-name (name)
"Select the first name from a name represented as a list."

(if the first element of name is a title 4)= (2)
if (member (first name) xtitlesx)

Uses «titlesx 1.

(then return the first-name of the rest of the name 5)= (2)
(first-name (rest name))

(else return the first element of the name 6)= (2)
(first name)

7

10

11

6 ERIC BAILEY

Exercises

(src/intro.lisp 7)=
(in-package #:paip)
(defpackage #:paip.intro
(:use #:cl #:lisp-unit))
(in-package #:paip.intro)

(titles 1)

;3 Exercise 1.1
(Exercise 1.1 8)

;; Exercise 1.2
(Exercise 1.2 17)

;7 Exercise 1.3
(Exercise 1.3 24)

Uses use 46.

Exercise 1.1

Define a version of last-name that handles “Rex Morgan MD,” “Mor-
ton Downey, Jr.,” and whatever other cases you can think of.

(Exercise 1.1 8)= ?)

(suffixes 13)

(last-name o)

(Exercise 1.1 tests 14)

(last-name 9)= 8)
(defun last-name (name)
"Select the last name from a name represented as a list."
(if (the last element of a name is a suffix 10)
(then return the last-name of all but the last element of the name 11)
(else return the last element of the name 12)))
Defines:
last-name, used in chunks 11, 15, and 16.
First, we check to see if the last element of the name is a suffix, i.e.
whether it's a member of *suffixesx.

(the last element of a name is a suffix 10)= 9)
(member (first (last name)) xsuffixesx)

Uses *suffixesx 13.
If it is, then drop it from the name and return the last-name of the
result.

(then return the last-name of all but the last element of the name 11)= (9)
(last-name (butlast name))
Uses last-name 9.

12

13

14

15

16

17

18

19

20

Otherwise, it’s the last name, so return it.

(else return the last element of the name 12) = (9)
(first (last name))

(suffixes 13)= 8)
(defparameter *suffixesx
"(MD Jr)
"A list of suffixes that can appear at the end of a name.")

Defines:
xsuffixesx*, used in chunk 10.

(Exercise 1.1 tests 14)= ®)
(define-test test-last-name
(Rex Morgan MD 15)
(Morton Downey, Jr 16))

(Rex Morgan MD 15)= (14)
(assert-equal 'Morgan (last-name ’'(Rex Morgan MD)))

Uses last-name 9.

(Morton Downey, Jr 16)= (14)
(assert-equal ’'Downey (last-name ’(Morton Downey Jr)))

Uses last-name 9.

Exercise 1.2

Write a function to exponentiate, or raise a number to an integer power.
For example (power 3 2) =32 =09.

(Exercise 1.2 17)= ?)
(square 22)

(power 18)

(Exercise 1.2 tests 23)

(power 18)= (17)
(defun power (x n)
"Raise x to the power of n."
(cond (if n is zero return 1 19)
(if n is even return x to the power of n over two, squared 20)
(otherwise return x times x to the power of n minus one 21)))

Defines:
power, used in chunks 20, 21, and 23.

(if n is zero return 1 19)= (18)
((zerop n) 1)

(if n is even return x to the power of n over two, squared 20)= (18)
((evenp n) (square (power x (/ n 2))))

Uses power 18 and square 22.

PAIP EXERCISES

Assert that the last-name of Rex

Morgan MD is Morgan.

W=1

xﬂ

1
(xn/z

XXX

)2

n—1

ifn=0,
if n is even,
otherwise.

7

21

22

23

24

25

26

27

28

8 ERIC BAILEY

(otherwise return x times x to the power of n minus one 21)= (18)
(t (x x (power x (- n 1))))

Uses power 18.

(square 22)= (17)
(defun square (x) (expt x 2))

Defines:
square, used in chunk 20.

(Exercise 1.2 tests 23)= (17)
(define-test test-power
(assert-equal 9 (power 3 2)))

Uses power 18.

Exercise 1.3

Write a function that counts the number of atoms in an expression.
For example: (count-atoms '(a (b) c)) = 3. Notice that there is
something of an ambiguity in this: should (a nil c) count as three
atoms, or as two, because it is equivalent to (a () c)?

(Exercise 1.3 24)= (7)
(defun count-atoms (exp)
"Return the total number of non-nil atoms in the expression."
(cond (if exp is nil there are no atoms 25)
(if exp is an atom there is only one 26)
(otherwise add the count of the atoms in the first and rest of exp 27)))

Defines:
count-atoms, used in chunk 27.

(if exp is nil there are no atoms 25)= (24)
((null exp) 0)

(if exp is an atom there is only one 26) = (24)
((atom exp) 1)

(otherwise add the count of the atoms in the first and rest of exp 27)= (24)
(t (+ (count-atoms (first exp))
(count-atoms (rest exp))))

Uses count-atoms 24.

Higher-Order Functions

(mappend 28)= (31 77)
(defun mappend (fn the-list)
"Apply fn to each element of list and append the results."
(apply #'append (mapcar fn the-list)))

Defines:
mappend, used in chunks 51 and 8o.

square(x) = x

2

A Simple Lisp Program

29 (random-elt 29) = (77)
(defun random-elt (choices)
"Choose an element from a list at random."
(elt choices (random (length choices))))

Defines:
random-elt, used in chunk 78.

Overview of Lisp

30 (find-all 30)= (31)
(defun find-all (item sequence &rest keyword-args
S&key (test #'eql) test-not &allow-other-keys)
"Find all those elements of sequence that match item,
according to the keywords. Doesn’t alter sequence."
(if test-not
(apply #'remove item sequence
:test-not (complement test-not) keyword-args)
(apply #'remove item sequence
:test (complement test) keyword-args)))

;3 (setf (symbol-function 'find-all-if) #’remove-if-not)

Defines:
find-all, used in chunk 36.

GPS: The General Problem Solver

31 (src/gps.lisp 31)=
(in-package #:paip)
(defpackage #:paip.gps
(:use #:cl #:lisp-unit)
(:shadow #:debug)
(:export #:GPS))
(in-package #:paip.gps)
(find-all 30)
(mappend 28)
(A list of available operators 32)
(An operation with preconds, add-list and del-list 33)
(Solve a goal from a state using a list of operators 34)
(Achieve an individual goal 36)
(Achieve all goals 35)
(Decide if an operator is appropriate for a goal 37)
(Apply operator to current state 38)
(Auxiliary Functions 39)
(Nursery School Example 49)
(Monkey and Bananas Example 50)
(The Maze Searching Domain 51)
(Maze Tests 52)

(Convert existing operators 45)

(The Blocks World Domain 53)

14 ERIC BAILEY

(Print debugging information s57)

(GPS Tests 59)
Uses debug 57, GPS 34, and use 46.

32 (A list of available operators 32)= (31)
(defvar xops* nil "A list of available operators.")
Defines:

*xops#, used in chunks 34, 36, and 46.

33 (An operation with preconds, add-list and del-list 33)= (31)

(defstruct op
"An operation"
(action nil)
(preconds nil)
(add-1list nil)
(del-list nil))

Uses op 44.

34 (Solve a goal from a state using a list of operators 34)= (31)
(defun GPS (state goals &optional (xops* *xopsx*))
"General Problem Solver: from state, achieve goals using xopsx."
(remove-if-not #'action-p
(achieve-all (cons ’'(start) state) goals nil)))
Defines:

GPS, used in chunks 31 and 51.
Uses *ops* 32, achieve 36, achieve-all 35, and action-p 41.

35 (Achieve all goals 35)= (31)
(defun achieve-all (state goals goal-stack)
"Achieve each goal, trying several orderings."
(some #'(lambda (goals) (achieve-each state goals goal-stack))
(orderings goals)))

(defun achieve-each (state goals goal-stack)
"Try to achieve each goal, then make sure they still hold."
(let ((current-state state))
(if (and (every #'(lambda (g)
(setf current-state
(achieve current-state g goal-stack)))
goals)
(subsetp goals current-state :test #'equal))
current-state)))

(defun orderings (1lst)
(if (> (length 1lst) 1)
(list lst (reverse 1lst))
(list 1st)))
Defines:
achieve-all, used in chunks 34 and 38.
achieve-each, never used.

orderings, never used.
Uses achieve 36.

PAIP EXERCISES

36 (Achieve an individual goal 36)= (31)
(defun achieve (state goal goal-stack)
"A goal is achieved if it already holds,
or if there is an appropriate op for it that is applicable."
(dbg-indent :gps (length goal-stack) "Goal: ~a" goal)
(cond ((member-equal goal state) state)
((member-equal goal goal-stack) nil)
(t (some #'(lambda (op) (apply-op state goal op goal-stack))
(appropriate-ops goal state)))))

(defun appropriate-ops (goal state)
"Return a list of appropriate operators,
sorted by the number of unfulfilled preconditions."
(sort (copy-list (find-all goal *ops* :test #'appropriate-p)) #'<
rkey #'(lambda (op)
(count-if #'(lambda (precond)
(not (member-equal precond state)))
(op-preconds op)))))
Defines:
achieve, used in chunks 34 and 35.
appropriate-ops, never used.
Uses *ops* 32, apply-op 38, appropriate-p 37, dbg-indent 57, find-all 30,
member-equal 47, and op 44.

37 (Decide if an operator is appropriate for a goal 37)= (31)
(defun appropriate-p (goal op)
"An op is appropriate to a goal if it is in its add list."
(member-equal goal (op-add-list op)))
Defines:
appropriate-p, used in chunk 36.
Uses member-equal 47 and op 44.

38 (Apply operator to current state 38)= (31)
(defun apply-op (state goal op goal-stack)
"Return a new, transformed state if op is applicable."
(dbg-indent :gps (length goal-stack) "Consider: ~a" (op-action op))
(let ((statex (achieve-all state (op-preconds op)
(cons goal goal-stack))))
(unless (null statex)
(dbg-indent :gps (length goal-stack) "Action: ~a" (op-action op))
(append (remove-if #'(lambda (x)
(member-equal x (op-del-list op)))
statex)
(op-add-list op)))))
Defines:

apply-op, used in chunk 36.
Uses achieve-all 35, dbg-indent 57, member-equal 47, and op 44.

15

39

40

41

42

43

16 ERIC BAILEY

Auxiliary Functions

(Auxiliary Functions 39) =
(Is a condition an executing form? 40)

(Is x an action? 41)

(Is the argument a list that starts with a given atom? 42)
(Convert an operator to use the executing convention 43)
(Create an operator 44)

(Use a list of of operators 46)

(Test if an element is equal to a member of a list 47)

(Is a condition an executing form? 40)=
(defun executing-p (x)
"Is x of the form: (executing ...) ?"
(starts-with x ’'executing))
Defines:

executing-p, used in chunks 41 and 43.
Uses starts-with 42.

(Is x an action? 41)=
(defun action-p (x)

"Is x something that is (start) or (executing ...

(or (equal x ’'(start)) (executing-p x)))

Defines:
action-p, used in chunk 34.
Uses executing-p 4o.

(Is the argument a list that starts with a given atom? 42)=
(defun starts-with (list x)
"Is this a list whose first element is x?"
(and (consp list) (eql (first list) x)))

Defines:
starts-with, used in chunks 40 and 7o.

(Convert an operator to use the executing convention 43)=
(defun convert-op (op)

(31)

(39)

(39)

)"

(39 77)

(39)

"Make op conform to the (EXECUTING op) convention."

(unless (some #'executing-p (op-add-list op))

(push (list 'executing (op-action op)) (op-add-list op)))

op)
Defines:
convert-op, used in chunks 44 and 45.
Uses executing-p 40 and op 44.

44

45

46

47

48

PAIP EXERCISES

(Create an operator 44)= (39)
(defun op (action &key preconds add-list del-list)
"Make a new operator that obeys the (EXECUTING op) convention."
(convert-op (make-op :action action
:preconds preconds
radd-list add-list
:del-1list del-list)))
Defines:
op, used in chunks 33, 36-38, 43, 50, 51, and 53.
Uses convert-op 43.

(Convert existing operators 45)= (31)
(mapc #'convert-op *school-opsx*)

Uses *school-ops* 49 and convert-op 43.

(Use a list of of operators 46)= (39)
(defun use (oplist)
"Use oplist as the default list of operators."
(length (setf xops* oplist)))
Defines:

use, used in chunks 7, 31, 52, 54, 60, 83, and 84.
Uses *ops* 32.

(Test if an element is equal to a member of a list 47)= (39)
(defun member-equal (item list)
(member item list :test #'equal))

Defines:
member-equal, used in chunks 36-38.

Nursery School Example

To drive the son to school, the son must start at home and the car
must work.

(Drive son to school 48) = (49)
(make-op :action ’'drive-son-to-school
:preconds '(son-at-home car-works)
radd-list ’(son-at-school)
:del-list ’(son-at-home))

17

18 ERIC BAILEY

49 (Nursery School Example 49)= (31)
(defparameter *xschool-ops*
(list
(Drive son to school 48)
(make-op :action ’shop-installs-battery
:preconds '(car-needs-battery shop-knows-problem shop-has-money)
:add-list ’(car-works))
(make-op :action ’tell-shop-problem
:preconds ’(in-communication-with-shop)
:add-list ' (shop-knows-problem))
(make-op :action ’telephone-shop
:preconds ' (know-phone-number)
radd-list '(in-communication-with-shop))
(make-op :action ’look-up-number
:preconds ' (have-phone-book)
:add-list ' (know-phone-number))
(make-op :action ’give-shop-money
:preconds ' (have-money)
radd-list ’(shop-has-money)
:del-list ’(have-money))))

Defines:
xschool-opsx, used in chunks 45 and 59.

PAIP EXERCISES 19

Monkey and Bananas

50 (Monkey and Bananas Example 50)= (31)
(defparameter xbanana-opsx*
(list
(op 'climb-on-chair
:preconds '(chair-at-middle-room at-middle-room on-floor)

radd-list ’'(at-bananas on-chair)
:del-list ’'(at-middle-room on-floor))
(op 'push-chair-from-door-to-middle-room
:preconds '(chair-at-door at-door)
;add-1list ’'(chair-at-middle-room at-middle-room)
:del-list ’(chair-at-door at-door))
(op 'walk-from-door-to-middle-room
:preconds ’'(at-door on-floor)
radd-list ’'(at-middle-room)
:del-list ’'(at-door))
(op 'grasp-bananas
:preconds '(at-bananas empty-handed)
radd-list ' (has-bananas)
:del-list '(empty-handed))
(op 'drop-ball
:preconds ’(has-ball)
radd-list '(empty-handed)
:del-list '(has-ball))
(op 'eat-bananas
:preconds ' (has-bananas)
radd-list ’'(empty-handed not-hungry)
:del-list ’(has-bananas hungry))))
Uses op 44.

20 ERIC BAILEY

The Maze Searching Domain

51 (The Maze Searching Domain 51)= (31)
(defun make-maze-ops (pair)
"Make maze ops in both directions."
(list (make-maze-op (first pair) (second pair))
(make-maze-op (second pair) (first pair))))

(defun make-maze-op (here there)
"Make an operator to move between two places."
(op ‘(move from ,here to ,there)
:preconds ‘((at ,here))
radd-list ‘((at ,there))
:del-list ‘((at ,here))))

(defparameter xmaze-opsx*
(mappend #'make-maze-ops
"((12) (23) (34) (49) (914) (98) (87) (7 12) (12 13)
(12 11) (11 6) (11 16) (16 17) (17 22) (21 22) (22 23)
(23 18) (23 24) (24 19) (19 20) (20 15) (15 10) (10 5) (20 25))))

(defun find-path (start end)
"Search a maze for a path from start to end."
(let ((results (GPS ‘((at ,start)) ‘((at ,end)))))
(unless (null results)
(cons start (mapcar #'destination
(remove '(start) results
:test #'equal))))))

(defun destination (action)
"Find the Y in (executing (move from X to Y))."
(fifth (second action)))

Defines:
destination, never used.
find-path, used in chunk 52.
make-maze-op, never used.
make-maze-ops, never used.
Uses GPS 34, mappend 28, and op 44.

Tests

52 (Maze Tests 52)= (31)
(define-test maze
(use *maze-ops*)
(assert-equal '(1 234987 12 11 16 17 22 23 24 19 20 25)
(find-path 1 25)))

(define-test go-nowhere
(use *maze-ops*)
(assert-equal '(1) (find-path 1 1)))

(define-test maze-reverse
(use *maze-ops*)
(assert-equal (find-path 1 25) (reverse (find-path 25 1))))
Uses find-path 51 and use 46.

PAIP EXERCISES

21

22 ERIC BAILEY

The moral is that when a programmer uses punsaATsaying what's
convenient instead of what’s really happening—there’s bound to be
trouble.

The Blocks World Domain

53 (The Blocks World Domain 53)= (31)
(defun make-block-ops (blocks)
(let ((ops nil))
(dolist (a blocks)
(dolist (b blocks)
(unless (equal a b)
(dolist (c blocks)
(unless (or (equal c a)
(equal c b))
(push (move-op a b c) ops)))
(push (move-op a 'table b) ops)
(push (move-op a b 'table) ops))))
ops))

(defun move-op (a b c)
"Make an operator to move A from B to C."
(op ‘(move ,a from ,b to ,c)
:preconds ‘((space on ,a) (space on ,c) (,a on ,b))
:add-list (move-ons a b c)
:del-list (move-ons a c b)))

(defun move-ons (a b c)
(if (eq b "table)
‘((,a on ,c))
‘((,a on ,c) (space on ,b))))

(Blocks World Tests 54)

Defines:
make-block-ops, used in chunk 54.
move-ons, never used.
move-op, never used.

Uses op 44.

54 (Blocks World Tests 54)= (53)
(define-test simplest-blocks-problem
(use (make-block-ops ’'(a b)))
(assert-equal '((start) (executing (move a from table to b)))
(gps '((a on table) (b on table) (space on a) (space on b)
(space on table))
"((a on b) (b on table)))))

(define-test slighty-more-complex-blocks
(use (make-block-ops '(a b)))
(assert-equal '((start)
(executing (move a from b to table))
(executing (move b from table to a)))
(gps '((a on b) (b on table) (space on a) (space on table))
"((b on a)))))

(define-test blocks-goals-order-insignificant
(let ((ops (make-block-ops '(a b c))))
(let ((state '"((a on b) (b on c) (c on table)
(space on a) (space on table))))
(assert-equal ’((start)

(executing (move
(executing (move
(executing (move
(gps state ’'((b on
(assert-equal ’((start)
(executing (move
(executing (move
(executing (move
(gps state ’((c on

a from b to table))
b from c to a))

c from table to b)))
a) (c on b)) ops))

a from b to table))

b from c to a))

c from table to b)))
b) (b on a)) ops)))))

(define-test blocks-ops-ordered-intelligently
(let ((ops (make-block-ops '(a b c))))
(let ((state "((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))))
(assert-equal '((start)
(executing (move c from a to table))
(executing (move a from table to b)))
(gps state '((c on table) (a on b)) ops)))
(let ((state '"((a on b) (b on c) (c on table)
(space on a) (space on table))))

(assert-equal ’((start)
(executing (move
(executing (move
(executing (move
(gps state ’'((b on
(assert-equal '((start)
(executing (move
(executing (move
(executing (move
(gps state '((c on

a from b to table))
b from c to a))

c from table to b)))
a) (c on b)) ops))

a from b to table))

b from c to a))

c from table to b)))
b) (b on a)) ops)))))

PAIP EXERCISES

23

55

56

24 ERIC BAILEY

(Blocks: The Sussman Anomaly 55)
Uses make-block-ops 53 and use 46.

The Sussman Anomaly

N.B. These results are undesirable and will be addressed in chapter 6.

(Blocks: The Sussman Anomaly 55)= (54)
(define-test blocks-the-sussman-anomaly
(let ((start '((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))))
(assert-nil (gps start ’((a on b) (b on c))))
(assert-nil (gps start '((b on c) (a on b))))))

Debugging

(Debugging usage 56)=
;3 Example call
(dbg :gps "The current goal is: ~a

" goal)
;3 Turn on debugging
(debug :gps)

;3 Turn off debugging
(undebug :gps)
Uses dbg 57, debug 57, and undebug 57.

57

58

(Print debugging information 57)= 61

(defvar xdbg-ids* nil
"Identifiers used by dbg")

(defun dbg (id format-string &rest args)
"Print debugging info if (DEBUG ID) has been specified."
(when (member id *dbg-idsx)
(format xdebug-iox "~&?" format-string args)))

(defun debug (&rest ids)
"Start dbg output on the given ids."
(setf *dbg-ids* (union ids xdbg-idsx)))

(defun undebug (&rest ids)
"Stop dbg on the ids. With no ids, stop dbg altogether."
(setf *dbg-ids* (if (null ids) nil
(set-difference *dbg-ids* ids))))

(defun dbg-indent (id indent format-string &rest args)
"Print indented debugging info if (DEBUG ID) has been specified."
(when (member id xdbg-idsx)
(format xdebug-iox "~&V@T~?" (* 2 indent) format-string args)))

Defines:

xdbg-ids*, never used.

dbg, used in chunk 56.

dbg-indent, used in chunks 36 and 38.
debug, used in chunks 31 and 56.
undebug, used in chunk 56.

Exercises

Exercise 4.2

(permutations 58) =

(defun permutations (xs)
(if (endp (cdr xs))
(list xs)
(Loop for x in xs

append (loop for ys in (permutations (remove x xs :count 1
rtest #'eq))

collect (cons x ys)))))

Defines:

permutations, never used.

PAIP EXERCISES

25

26 ERIC BAILEY

Tests

59 (GPS Tests 59)= (31)
(define-test complex
(assert-equal
(cons '(start)
(mapcar #'(lambda (step) (list ’'executing step))
" (look-up-number
telephone-shop
tell-shop-problem
give-shop-money
shop-installs-battery
drive-son-to-school)))
(gps '(son-at-home car-needs-battery have-money have-phone-book)
"(son-at-school)
school-opsx)))

(define-test unsolvable
(assert-nil (gps ’'(son-at-home car-needs-battery have-money)
"(son-at-school)
xschool-opsx*)))

(define-test simple
(assert-equal ’'((start) (executing drive-son-to-school))
(gps '(son-at-home car-works)
"(son-at-school)
school-opsx)))

(define-test money-leftover
(assert-equal '((start) (executing drive-son-to-school))
(gps '(son-at-home have-money car-works)
" (have-money son-at-school)
school-opsx)))

(define-test clobbered-sibling
(assert-nil (gps ’'(son-at-home car-needs-battery have-money have-phone-book)
"(have-money son-at-school)
xschool-opsx*)))

Uses *school-opsx* 49.

Eriza: Dialog with a Machine

liza.li =
60 (src/.e iza lisp 60) . EL1zA, one of the more well-known

(in-package #: pa%p) ‘ Al programs of the 1960s, simulates a

(defpackage #:paip.eliza psychotherapist, by way of a REPL.
(:use #:cl #:lisp-unit))

(in-package #:paip.eliza)

(ELIZA: Constants 72)

(ELIZA: Top-Level Function 76)

(ELIZA: Special Variables 7s)

(ELIZA: Data Types 74)

(ELIZA: Functions 77)

Uses use 46.

Pattern Matching

61 (ELIZA: Pattern Matching 61)= 77)

(pat-match 63) EL1zA makes heavy use of pattern

matching, which is at once versatile and
limited.
(match-variable 62)

(segment-match 69)
(segment-pattern-p 7o)

(variable-p 71)

62

63

64

65

66

67

68

28 ERIC BAILEY

Matching

(match-variable 62) = (61)
(defun match-variable (var input bindings)
"Does VAR match input? Uses (or updates) and returns bindings."
(let ((binding (get-binding var bindings)))
(cond ((not binding) (extend-bindings var input bindings))
((equal input (binding-val binding)) bindings)
(t fail))))

Defines:
match-variable, used in chunks 65 and 69.
Uses binding-val 73, extend-bindings 73, fail 72, and get-binding 73.

(pat-match 63)= (61)
(defun pat-match (pattern input &optional (bindings no-bindings))
"Match pattern against input in the context of the bindings."
(cond (Fail if the binding list is fail 64)
(Match a variable 65)
(If pattern equals input, return bindings 66)
(Match a segment 67)
(Call pat match recursively 68)
(

Defines:
pat-match, used in chunks 68, 69, 72, and 78.
Uses fail 72 and no-bindings 72.

(Fail if the binding list is fail 64)= (63)
((eq bindings fail) fail)
Uses fail 72.

(Match a variable 65)= (63)
((variable-p pattern) (match-variable pattern input bindings))

Uses match-variable 62 and variable-p 71.

(If pattern equals input, return bindings 66)= (63)
((eql pattern input) bindings)

(Match a segment 67)= (63)
((segment-pattern-p pattern) (segment-match pattern input bindings))

Uses segment-match 69 and segment-pattern-p 7o.

(Call pat-match recursively 68)= (63)
((and (consp pattern) (consp input))
(pat-match (rest pattern) (rest input)
(pat-match (first pattern) (first input)
bindings)))
Uses pat-match 63.

Verify var is bound to input in
bindings. If bound to another value,
fail. If unbound, extend-bindings.

If the binding list is fail, then the
match fails, because some previous
match must have failed.

If the pattern is a single variable,
return the result of match-variable;
either bindings (possibly extended) or
fail.

If pattern equals input, return
bindings as is.

When both pattern and input are lists
and the (car pattern) is a segment
variable, match the variable to the
initial part of the input and attempt to
match (cdr pattern) to the rest.

PAIP EXERCISES

69 (segment-match 69)= (61)
(defun segment-match (pattern input bindings &optional (start 0))
"Match the segment pattern ((?* var) . pat) against input."”
(let ((var (second (first pattern)))
(pat (rest pattern)))
(if (null pat)
(match-variable var input bindings)
(let ((pos (position (first pat) input
:start start :test #'equal)))
(if (null pos)
fail
(let ((b2 (pat-match pat (subseq input pos) bindings)))
(if (eq b2 fail)
(segment-match pattern input bindings (+ pos 1))
(match-variable var (subseq input 0 pos) b2))))))))
Defines:

segment-match, used in chunk 67.
Uses fail 72, match-variable 62, and pat-match 63.

Predicates

70 (segment-pattern-p 70)= (61)
(defun segment-pattern-p (pattern)
"Is this a segment matching pattern: ((?*x var) . pat)"
(and (consp pattern)
(starts-with (first pattern) ’'?x)))
Defines:

segment-pattern-p, used in chunk 67.
Uses starts-with 42.

71 (variable-p 71)= (61)
(defun variable-p (x)
"Is x a variable (a symbol beginning with ’'?")?"
(and (symbolp x)
(equal (char (symbol-name x) 0) #\?)))

Defines:
variable-p, used in chunk 65.

Constants

72 (ELIZA: Constants 72)= (60)
(defconstant fail nil
"Indicates pat-match failure")

(defconstant no-bindings ’((t . t))
"Indicates pat-match success, with no variables.")
Defines:
fail, used in chunks 62-64, 69, and 78.
no-bindings, used in chunks 63 and 73.
Uses pat-match 63.

29

30 ERIC BAILEY

73 (ELIZA: Binding Functions 73)=
(defun get-binding (var bindings)
"Find a (variable . value) pair in a binding list."
(assoc var bindings))

(defun binding-val (binding)
"Get the value part of a single binding."
(cdr binding))

(defun lookup (var bindings)
"Get the value part (for var) from a binding list."
(binding-val (get-binding var bindings)))

(defun extend-bindings (var val bindings)
"Add a (var . value) pair to a binding list."
(cons (cons var val)
(if (eq bindings no-bindings)
nil
bindings)))
Defines:
binding-val, used in chunk 62.
extend-bindings, used in chunk 62
get-binding, used in chunk 62.

lookup, never used.
Uses no-bindings 72.

Rules

74 (ELIZA: Data Types 74)=
(defun rule-pattern (rule) (first rule))
(defun rule-responses (rule) (rest rule))
Defines:

rule-pattern, used in chunk 78.
rule-responses, used in chunk 78.

(77)

(60)

75

76

77

(ELIZA: Special Variables 75)= (60)
(defparameter xeliza-rulesx*
"((((?* ?x) hello (?* ?y))
(How do you do. Please state your problem.))
(((?* ?x) I want (?*x ?y))
(What would it mean if you got ?y)
(Why do you want ?y) (Suppose you got ?y soon))
(((?% ?2x) if (?x ?y))
(Do you really think its likely that ?y) (Do you wish that ?y)
(What do you think about ?y) (Really- if ?y))
(((?% ?x) no (?x ?y))
(Why not?) (You are being a bit negative)
(Are you saying "NO" just to be negative?))
(((?*x ?x) I was (?*x ?y))
(Were you really?) (Perhaps I already knew you were ?y)
(Why do you tell me you were ?y now?))
(((?*x ?2x) I feel (?x ?y))
(Do you often feel ?y ?))
(((?% ?2x) I felt (?x ?y))
(What other feelings do you have?))))

Er1zA Proper

(ELIZA: Top-Level Function 76)= (60)
(defun eliza ()
"Respond to user input using pattern matching rules."
(loop
(print ’'eliza>)
(write (flatten (use-eliza-rules (read))) :pretty t)))

Defines:
eliza, used in chunk 84.
Uses flatten 8o and use-eliza-rules 78.

(ELIZA: Functions 77)= (60)
(use-eliza-rules 78)

(switch-viewpoint 79)

(ELIZA: Pattern Matching 61)
(ELIZA: Binding Functions 73)
(flatten 8o)

(random-elt 29)

(mappend 28)

(Is the argument a list that starts with a given atom? 42)

PAIP EXERCISES

31

78

79

8o

32 ERIC BAILEY

(use-eliza-rules 78) = (77)
(defun use-eliza-rules (input)
"Find some rule with which to transform the input."
(some #'(lambda (rule)
(let ((result (pat-match (rule-pattern rule) input)))
(unless (eq result fail)
(sublis (switch-viewpoint result)
(random-elt (rule-responses rule))))))
xeliza-rulesx))

Defines:
use-eliza-rules, used in chunk 76.

Uses fail 72, pat-match 63, random-elt 29, rule-pattern 74, rule-responses 74,
and switch-viewpoint 79.

(switch-viewpoint 79) = (77)
(defun switch-viewpoint (words)
"Change I to you and vice versa, and so on."
(sublis " ((I . you) (you . I) (me . you) (am . are))
words))

Defines:
switch-viewpoint, used in chunk 78.

(flatten 8o)= (77)
(defun flatten (the-list)

"Append together elements (or lists) in the list."
(mappend #'mklist the-list))

(defun mklist (x)
"Return x if it is a list, otherwise (x)."
(if (listp x)
X
(list x)))
Defines:
flatten, used in chunk 76.

mklist, never used.
Uses mappend 28.

Build Software Tools

An Interactive Interpreter Tool

(defun program ()
(loop
(print prompt)
(print (transform (read)))))

81 (interactive-interpreter 81) = (83)
(defun interactive-interpreter (prompt transformer)
"(‘prompt’ for and) read an expression, ‘transform’ it and print the result."
(loop
(handler-case
(progn
(if (stringp prompt)
(print prompt)
(funcall prompt))
(print (funcall transformer (read))))
(error (condition)
(format t "~&;; Error ~a ignored. Back to top level."
condition)))))

(prompt-generator 82)

Defines:
interactive-interpreter, never used.

82 (prompt-generator 82)= (81)
(defun prompt-generator (&optional (num 0) (ctl-string "[~d] "))
"Return a function that prints prompts like [1], [2], etc."
#' (lambda () (format t ctl-string (incf num))))

Defines:
prompt-generator, never used.

83

34 ERIC BAILEY

Package

(srcftools.lisp 83)=
(in-package #:paip)
(defpackage #:paip.tools
(:use #:cl #:lisp-unit))
(in-package #:paip.tools)

(interactive-interpreter 81)

Uses use 46.

84

Package

(paip.asd 84)=
;i35 paip.asd

(asdf:defsystem #:paip

:description "Paradigms of Artificial Intelligence Programming exercises"

rauthor "Eric Bailey <eric@ericb.me>"
;; TODO :license "Specify license here"
:depends-on (#:lisp-unit)

:serial t

:components ((:module "src"
:serial t
:components
((:file "intro")
(:file "gps")

(:file "eliza")
(:file "tools")))))

(defpackage #:paip
(:use #:cl))

(in-package #:paip)

Uses eliza 76 and use 46.

Test Runner

85 (bin/runtests 85)=
#! /usr/bin/env nix-shell
#! nix-shell -i sh -p shbcl

N.B. quicklisp must be installed and configured.

sbcl -noinform -non-interactive \
-userinit init.lisp \
-eval "(in-package :paip.$1)" \
-eval "(letx ((results (lisp-unit:run-tests :all :paip.$1))
(failures (lisp-unit:failed-tests results))
(status (if (null failures) 0 1)))
(lisp-unit:print-failures results)
(sb-posix:exit status))"

86 (init.lisp 86)=
#-quicklisp
(let ((quicklisp-init (merge-pathnames "quicklisp/setup.lisp"
(user-homedir-pathname))))
(when (probe-file quicklisp-init)
(load quicklisp-init)))

(push (concatenate ’string (sb-posix:getcwd) "/")
asdf:xcentral-registryx)

(asdf:load-system :paip)

Chunks

A list of available operators 32)

abstract first-name 2)

Achieve all goals 35)

Achieve an individual goal 36)

An operation with preconds, add-list and del-list 33)
Apply operator to current state 38)

Auxiliary Functions 39)

bin/runtests 85)

Blocks World Tests 54)

Blocks: The Sussman Anomaly s5)

Call pat-match recursively 68)

Convert an operator to use the executing convention 43)
Convert existing operators 45)

Create an operator 44>

Debugging usage 56)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Decide if an operator is appropriate for a goal 37)
(Drive son to school 48)

(ELIZA: Binding Functions 73)

(ELIZA: Constants 72)

(ELIZA: Data Types 74)

(ELIZA: Functions 77)

(ELIZA: Pattern Matching 61)

(ELIZA: Special Variables 75)

(ELIZA: Top-Level Function y6)

(else return the first element of the name 6)
(else return the last element of the name 12)
(Exercise 1.1 8)

(Exercise 1.1 tests 14)

(Exercise 1.2 17)

(Exercise 1.2 tests 23)

(Exercise 1.3 24)

(Fail if the binding list is fail 64)
(find-all 30)

(flatten 8o)

40 ERIC BAILEY

(function first-name(name): 3)

GPS Tests 59)

If pattern equals input, return bindings 66)
if exp is an atom there is only one 26)

if exp is nil there are no atoms 25)

if n is even return x to the power of n over two, squared 2o0)
if n is zero return 1 19)

if the first element of name is a title 4)

init.lisp 86)

interactive-interpreter 81)

Is a condition an executing form? 4o)

Is the arqument a list that starts with a given atom? 42)
Is x an action? 41)

last-name o)

mappend 28)

Match a segment 67)

Match a variable 65)

match-variable 62)

Maze Tests 52)

Monkey and Bananas Example so)

Morton Downey, Jr 16)

Nursery School Example 49)

otherwise return x times x to the power of n minus one 21)
paip.asd 84)

pat-match 63)

permutations s8)

power 18)

Print debugging information s7)

prompt-generator 82)

random-elt 29)

Rex Morgan MD 15)

segment-match 69)

segment-pattern-p 7o)

Solve a goal from a state using a list of operators 34)
square 22)

src/eliza.lisp 6o)

src/gps.lisp 31)

src/intro.lisp 7)

src/tools.lisp 83)

suffixes 13)

switch-viewpoint 79)

Test if an element is equal to a member of a list 47)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
(
(
(otherwise add the count of the atoms in the first and rest of exp 27)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(The Blocks World Domain 53)

PAIP EXERCISES 41

(the last element of a name is a suffix 10)

(The Maze Searching Domain 51)

(then return the last-name of all but the last element of the name 11)
(then return the first-name of the rest of the name s)

(titles 1)

(Use a list of of operators 46)

(use-eliza-rules 78)

(variable-p 71)

Index

dbg-ids: 57

OpS: 32, 34, 36, 46
school-ops: 45, 49, 59
xsuffixesx: 10, 13

xtitles*: 1,4

achieve: 34, 35, 36
achieve-all: 34, 35,38
achieve-each: 3547
action-p: 34,&17
apply-op: 36,38
appropriate-ops: 36
appropriate-p: 36, 37
binding-val: 62,73
convert-op: 43, 44, 45
count-atoms: 24, 27
dbg: 56, 57

dbg-indent: 36, 38, 57
debug: 31, 56, 57
destination: E;

eliza: 76, 84 B
executing-p: 40, 41, 43
extend-bindings: 62,73
fail: 62,63,64,69,23,78
find-all: 30, 36
find-path: 51, 52
flatten: 76759
get-binding: 62,73
GPS: 31, 34, 51
interacfi;e-interpreter: 81
last-name: 9,11,15,16
lookup: 73
make-block-ops: 53, 54
make-maze-op: 51
make-maze-ops:4§1

44 ERIC BAILEY

mappend: 28, 51, 80
match-variable: 62, 65, 69
member-equal: 36, 37, 38, 47
mklist: 8o

move-ons: 53

move-op: 53

no-bindings: 63, 72,73

op: 33, 36, 37, 38, 43, 44, 50, 51, 53
orderings: 35

pat-match: §§,68,69,72,78
permutations: 58

power: 18, 20, 21, 23
prompt-generator: 82
random-elt: 29,78
rule-pattern: 74, 78
rule-responses: 74,78
segment-match: 67, 69
segment-pattern-p: 67, 70
square: 20, 22
starts-with: 40, 42, 70
switch-viewpoint: 78, 79
undebug: 56, 57 B
use: 7,31,&§732,54,60,83,84
use-eliza-rules: 76,Z§
variable-p: 65, 71

Bibliography

	Introduction to Common Lisp
	Using Functions
	Exercises
	Higher-Order Functions

	A Simple Lisp Program
	Overview of Lisp
	GPS: The General Problem Solver
	Auxiliary Functions
	Nursery School Example
	Monkey and Bananas
	The Maze Searching Domain
	The Blocks World Domain
	Debugging
	Exercises
	Tests

	Eliza: Dialog with a Machine
	Pattern Matching
	Constants
	Rules
	Eliza Proper

	Build Software Tools
	An Interactive Interpreter Tool
	Package

	Package
	Test Runner
	Chunks
	Index
	Bibliography

